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The Geometry of Vectors



A vector can be represented geometrically by using a coordinate system where each element in the vector corresponds to a distance along one of the reference axes defining the system.  



	Ex/   x1 = , where 2 is the distance on the first reference axis (R1) and 3 is the distance on the second reference axis (R2).



R1
R2
2
3
x1




The arrow at the end of the vector suggests the direction of the vector – it is the end (terminus) of the vector.


Note:
1. this is a two-dimensional space
2. the reference axes are at right angles, representing an orthogonal reference system
3. the reference axes intersect at the origin of the space



Exercise


Consider three additional vectors





	x2 = ,  x3 = ,  x4 = 	Add these to the coordinate system.



R1
R2
x1





Note that these four vectors can be described in terms of (1) length and (2) direction.

Differences between vectors can also be described in terms of the angles between them.


In the general form, a n-element vector exists in a n-dimensional space.



Vector Length

The length of a vector can be obtained through the use of the Pythagorean Theorem.  This theorem applies because the reference axes are at right angles.  In this system, each vector can be considered the hypotenuse of a right triangle.  Because of this, the sum of the squares of the coordinates is equal to the square of the length of the vector.

	a2 + b2 = c2



	Length of x1 =  as the hypotenuse is the square root of 22 + 32 =  = 3.61.

b=3
c
a=2
Length = 
R1
R2
x1


We denote length of vector x as L(x).
To obtain the sum of squared elements of the vector, we multiple it by its transpose: x' x.
Thus, length of vector x is defined as:


	L(x) = 

Exercise

Compute the following:

L(x2 ) =

L(x3 ) =

L(x4) =



Vector Angles

The cosine of an angle  is useful because it is defined as the length of the side of the triangle which is adjacent to  divided by the length of the hypotenuse of the triangle.


	cos  = 

The cosine of an angle is zero when two vectors are separated by a 90° angle or are orthogonal.  This indicates that one vector contains no information about another vector.  

The cosine of an angle is one when two vectors are collinear, indicating that the information in the two vectors is redundant.

There is a relation between the scalar product of two vectors and the angle between them.
Cos
Degree: θ
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	 = L(x1) L(x2) cos 12 


	cos 12 = 


Vector Orthogonal Projection 

Orthogonal projection of x1 on x2 occurs by dropping a perpendicular line from the terminus of x1 to intersect with x2.  

p12
x1
x2
12



The result is a vector p12 which is collinear with x2 but has a different length.



Relying on the trig function, Cos  = .  

The length of p12 is defined by L(p12) = L(x1) Cos 12 .

Computing the Length of the Projection




Given the relation:  Cos 12 =  and Cos  = .  

p12
x1
x2
12


Next, solve for the length of the projection:  L(p12) = L(x1) Cos 12.





x1 = ,  x2 = ,  x3 = ,  x4 = 

In our previous example of vectors compute the following:


L(p12).  First solve for Cos 12 =  ~ 83° Angle
 

L(p12) = L(x1) Cos 12 = = .447


L(p14).  First solve for Cos 14 =   ~ 19° Angle


L(p14) = L(x1) Cos 14 = = 3.4


L(p42).  First solve for Cos 42 = 

L(p42) = L(x4) Cos 42 = 


L(p23).  First solve for Cos 23 = 

L(p23) = L(x2) Cos 23 = 


Vector Orthogonal Decomposition 

Orthogonal projection of a vector results in a geometric decomposition of the vector into two additive components.  
p12
x1
x2
12
o
p1O














The first projection is the same orthogonal projection from the earlier example, p12.  The second projection, p1O, is the projection of x1 onto vector o that is by definition orthogonal to x2.

The lengths of the two projections correspond to the lengths of the sides of the right triangle where the hypotenuse is x1.

L(p1O) = L(x1) Cos 1O


Example: x1 and x4

Since 14 = 19° , 1O = 90 – 19 = 71°.  So Cos 1O = Cos 71° = 0.326

L(p1O) = (3.61)(0.326) = 1.18

The final system is fully described here:
p14
x1
X4
o
p10
3.4
1.2
3.6
19°
71°

We can use the Pythagorean theorem to verify the computation of the two projections.  Since the square of the hypotenuse of a right triangle is the sum of the squares of the sides, we can check our work:

	[L(x1)]2 = [L(p12)]2 + [L(p1O)]2

	3.612 = (3.40)2 + (1.18)2 = 11.6 + 1.4 = 13.0


Deviation Scores and Standard Deviations

[bookmark: _GoBack]In statistics, we employ deviation scores often and some even use deviation scores regularly rather than raw scores.


Recognize that the length of a vector is the square root scalar product (inner product) of the vector.  If we were to compute the length of a deviation score vector, the length would be the square root of the sum of squared deviations; when divided by , this would provide the standard deviation.  So there is a direct relation between the length of deviation vectors and the standard deviation.



	L(d) = s  or alternatively,  s =  L(d) .

	Ex/  Consider data on GPA (X1) and SAT (X2) scores for 10 students.





	x1 = 	x2 = 	We can compute means for both:   = 2.7,  = 635.


By subtracting a vector of means from each vector of data, we can create deviation vectors.



Recall that  and 




	d1 = 	d2 = 		L(d1) = = 2.01	   L(d2) = = 371	



	s1 =  2.01	 = 0.64		s2 =  371 = 117


Vector Correlation and Separation


Because the correlation can be expressed in terms of deviation scores, we can see that 



 = 



[bookmark: OLE_LINK1]Recall that cos 12 = , so that when we are engaging deviation vectors, cos 12 = r12. 



Perfect positive correlation (r12 = 1) indicates that deviation vectors are collinear (12 = 0°).

Perfect negative correlation (r12 = -1) indicates that deviation vectors are opposite (12 = 180°).

Perfect lack of correlation (r12 = 0) indicates that the deviation vectors are orthogonal (12 = 90°).



We can compute the correlation between our scores on GPA and SAT:

	x1
	x2
	
	d1
	d12
	d2
	d22
	d1d2

	3.8
	760
	
	1.1
	1.21
	125
	15625
	137.5

	2.4
	710
	
	-0.3
	0.09
	75
	5625
	-22.5

	2.6
	680
	
	-0.1
	0.01
	45
	2025
	-4.5

	3.1
	730
	
	0.4
	0.16
	95
	9025
	38

	1.9
	420
	
	-0.8
	0.64
	-215
	46225
	172

	1.7
	410
	
	-1.0
	1.00
	-225
	50625
	225

	2.5
	620
	
	-0.2
	0.04
	-15
	225
	3

	2.4
	630
	
	-0.3
	0.09
	-5
	25
	1.5

	3.5
	720
	
	0.8
	0.64
	85
	7225
	68

	3.1
	670
	
	0.4
	0.16
	35
	1225
	14

	mean=2.7
	mean=635
	
	
	sum =4.04
	
	sum=137850
	632





	r12 = = 0.8475

This correlation corresponds to an angle of approximately 32° of separation in deviation score vectors for GPA and SAT in the 10-dimensional space from our 10 students.


Vector Orthogonal Decomposition and Bivariate Regression

We have already reviewed the typical regression model where variation in one variable (Y) is explained by another variable (X), employing a linear model:

	Yi = b0 + b1Xi + ei 

We also saw how this model partitions the total sums of squares of Y into two additive components, sums of squares regression and sums of squares error:

	SST = SSR + SSE
This partitioning of sums of squares can be represented geometrically using deviation score vectors dy and dx.  Regression of Y on X is analogous to the orthogonal decomposition of dy.

To do this, we must complete the orthogonal projection of vector dy on vector dx and a second vector that is orthogonal to dx which we call dE. (similar to o used earlier).

pYX
dY
dX
dE
pYE



The first projection involves projecting dY on dX resulting in pYX, which is referred to as the component of dY along dX.  The square of the length of pYX is analogous to the sums of squares regression.

	[L(pYX)]2 = SSR.


The second projection consist of the component of dY that is uncorrelated with dX, which is the projection of dY on the error vector, dE.  The square of the length of pYE is analogous to the sums of squares error; the length represents the component of dY that remains after the component related to dX has been removed.

	[L(pYE)]2 = SSE.


We can then apply the Pythagorean theorem to this system to obtain:

	[L(dY)]2 = [L(pYX)]2 + [L(pYE)]2  	SST = SSR + SSE 




We could use our GPA and SAT data to provide an example of these computations.  Suppose we want to predict SAT (dY) from GPA (dX), employing deviation scores.


The lengths of GPA (dX) and SAT (dY) reflect differences in standard deviations. 



L(dX) = = 2.01	   L(dY) = = 371.3


The cosine of the angle between the two vectors represents the correlation (0.8475).


The projections would have lengths computed by:

L(pYX) = L(dY) Cos YX = (371.3)(0.8475) = 314.68

L(pYE) = L(dY) Cos YE = (371.3)(0.5299) = 196.75

	note: since the angle of separate between Y and X is 320, the angle between Y and E must be approximately 580, corresponding to a cosine value of 0.5299.


The partitioning of the sums of squares is then:

	(371.3)2 = (314.68)2 + (196.75)2

	137864 = 99024 + 38711		approximately equal within rounding error


And, of course, from these sums of squares we can estimate R2 and R.

	R2 = 99024/137864 = 0.718		R = 0.8475
Michael C. Rodriguez	EPSY 8269: Matrix Algebra; Based on:  Terwilliger (1993), Matrices & Vectors
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2 is the distance on the first reference axis (R1) and 3 is the 
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